' OKY/Chi' Cryptanalytic Research on

Enigma, Hagelin and Cipher Teleprinter Machines.

The attached papers, written jointly by ORR HUEITENHMN and SdI. Dr. FRICKE at the request of TICON:, cover OKY/Chi methods of solution of the Enigma and the Hagelin $\mathrm{C}-36$ and $\mathrm{BC}-38$ macinines; and the cipher teleprinters T $52 \mathrm{a} / \mathrm{b}$, T $52 / \mathrm{c}$, SRI 43 , SE 40 and $S Z 42 \mathrm{a} / \mathrm{b}$ 。

TICOM
Int Aug. 2945

No. of pages 19 Copy No.

TICOM
10 Chairman
11-12 SoA.C. (2)
13 Cdr. Bacon
15 Cdr. Tandy
-
17 It. Col. Johnson
17 . Major Seaman
18. Lt. Eachus
19 It. Vance
20° Capt. Gowan
21 Lt. Fell
22-23 Ticom Files (2)
24 Car. Manson

SOLUTIONS OF ENIGMA MACHINES

(1) K Machines
-
(a) Elementary Solution $26 \times 26^{3}=440,000$ is deduced. On acoqunt of the six wheel orders a total of six periods of this length exist. The substitutions are reciprocal.

If 20 to 25 messages of the same setting arre available לhen the solution of these messages can be done in an elementary manner $j_{0} \theta_{0}$ the columns of the enccded texts written under one another in depth are solved as a Spaltercuarar. In this the reciprocity of the substitutions is made use of to a great extent. In the solution procedure no other cheiracieristic of the machine is used. This is also valid for the elementary solution of Stecker Enigma. After this elemertary solution of the encoded texts the determination of the machine setting presents no difficulties.. This is an easiex problem than the solution from part compromise (Teilkompromiss) which is described in (b).
(b) Solution from a Part Compromise

The knowledge of how the machine works and the circuit of the wheels is assumed. The solution is as follows:-

Since the middle wheel only makes one step for every 26 letters, then the middle wheel. the lef't wheel and the Umkehr wheel together can be regaraded for this period of time as a fixed Umkehr wheel. In figure 1 (see appendix) everything left of the red line is considered as an Umkehr wheel. The terminals of the wires from the 26 loys' of the keyboard through the entrance wheel (Eingangswalia) are fixed, For every letter the right wheel moves one stepo Since the circuit of the wheels for each of the 26 different positions of the right wheel are presumed mnown $_{0}$, the position at which all the 26 letters end at the red line can be stated. The turning of the right wheel can therefore be made uneffective. If a short olear - encoded compromise (Klan-Geheim-Kompromiss) is available then the terminals of the clear letters and the corresponding en \rightarrow coded letters at the red line can be marked for each of the three wheels in each of the 26 positions (ary one of these wheels can appear as the right wheel). Under the $3 \times 26=78$ different markings such a wheel must appear which will not contradict the assumption of a large Umkehr wheel lef't of the red line.

Example: Given the following compromise:

> Clear text: g.abinet゙toalt
> encoded text: $z s e w g j i x j p s u$

The circuit of a wheel is given in figure 2 (see appendix)
column 1. This is to be understood as follows:
iny conteot-(stift) of the wheel is taken as zero point for oounting, Then the wire which goes into the wheel at this zero point is conneoted in suoh a way that it comes out at point 6. The second wire terminates at point 12. The third wire at point 1 eto. Zero point for counting is hovever chosen in such a way that when A is typed it is in such a position that it will lie opposite the terminal of key A in the entrance wheel. In other words: when key F is pressed the current ends at the red line at position 9 etc. The second column of figure 2 gives the positions at the red line when the right whoel has movod one step etce

A table as in figure 2 raust be worked out for each of the three wheels.

After these prepabations a ecmpromise is investigated. Figure 3 (see appendix) results. Under the clear text and corresponding encoded text in accordance with each of the three tables 26 rows of figures are written for each of the three wheels. The first line under the clear text resulits es follows: In figure 2 near g in the fizst column is 14 , near a in the socond column is 11, near b in the third column is 06. In this way originates the first line under the encoded text. The second line of figure 3 gives the numbers which are next to g in the second and next to a in the third coluran $\mathrm{atc}_{\mathrm{u}}$ How the horizortal rows of figures are investigated: '

1) If there are two similar numbers in one cleat text row of ficures then in the cnooded text row of figures at the same positions there must; also be two similar numbers(but not the same ones), and vice versa.
2) In a clear text row of figures if there is a number which also appears at another position in the encodod text row of figures then the numbers which are at correspoiding positions if the neighboring rows of figures must also be equal.
3) At no position in neighboring rows of figures at the same position must there be similar numbers, In all 3×26 pairs of rows the solution is !provided by the pair for whtah the.three conditions are fulfilled. This is fulfilled in the example in Fig. 3 in the third row of figures. In this way the right wheel of the three vheels is determines. In addition its initial position at the beginning of the patt compromise.is detemined, in the example therefore 3. If during the encoding the center wheel has moved one step, then the three conditions mentioned above are no longer valid for all the rows of figures of Fig. 3. The conditions are fulfilled sepa rately for a left and a right part of the rows of figures.

In this case the center wheel and its initial position can then bo deterrined aoconding to the same principle. The red line of Fig. 1 is moved the breadth of one wheel to the left.

The initial position of the left wheel still remains to be determined. For this 26 attempts are nedessary, which can be carried out in a very short time.

If, however, the center wheel does not nove a step during the encoding of the compromise, then the center and the right wheels must be worked. out systematically. Once an Unkehrwheel catalogue has been produced this work is rendered easier.

It is then no longer a problem to determine the Ringstelilung of the Wheels.

If in an encoded text a certain word is assumed at any one unknown position, then this word is "moved aiong". the entire encoded text in the manner just described. At the correct position the three conditions are again fulfilled in the row of figures.
o) Solution with the aid of the e-Leiste

With the K-machine six different wheel orders are possible. The, adjustable Umkehr wheel can be set in twenty-six different positions. The perios of the three moveable wheels is about 17,000 steps. There are ${ }^{+}$ therefore $6 \times 26=156$ different periods of . 17,000 Iong respectively possible. If in bach of the 156 different periods the clear letter e is encoded 17,000 times, then 156 raws of encoded elements results, each 17,000 long. All these rows of encoded elements are designated e-Leiste.

The olear letter e appears in German with a frequency of 18%. If a German clear text encode with the K-machine is moved through the o-Leiste and if in each posj.tion the corresponding encoded elements ate counted, then the correct phase position wili have the maximum cases of correspondence. In this the Ringstellung need not be considered. The emLeiste need only be propared once. The comparison af the encoded text with the e-Leiste wolld have to be carried out on a machine. In order to come to a positive conolusion in a reasonable time, then several machines would have to be lised at the same time, even if one machine was capable of making 10,000 comparisons per seoond.

In GERMANY a practical solution with the aid of the e-Leist was not carried out, as in practice the method of solution from a part compromise was always possible.
2) Stedker-Enigma
a) Genera] ${ }^{\text {Hemarks }}$

Steckor-Enigma was considered secure when used according to regulations. In any case, in'practice Stecker) Eniema was never capmamespows solved. This, however, does not emalude the faci that in practice conditions could be available which provided the prerequisites for a solution; stereotyped beginnings, messages 0_{2}^{2} the same phase, routing messeces, etc.
No clear texts and encoded texts, however were made available to FW by any branch of the Armed Forces, with which they could have attempted a practical solution, because these were aileays oncoded aocording to regulations laid dowr. Only theoretical invastigations therefore of the security of Stecker-Enigma were carried out. IN have ideas of hov a, solution could be made. In 1939 or 1940 regulations ware replaced b_{j} better ones. At the same tirye the number of Steoker was also increased. To sun up the following must be stated: Although there are no faots available to enable. PW to conjecture a practical solution, IW never lost the fceling of ancertainty. Therefore "ITlickenfthlerwalze", "Steckeruhr" and "Gerät 39" were detreloped. It was clear that if a solution vere possible then the uniform movement of the wheels would be the sterting point for the solution.

It should now be stated why the alteration of the refulations was neoessary in 19139 and 40. This will be followed by ideas of how a solution could be made. Investigations concerning this had not been concluded by the spring; there was therefore still ho report about this. These remarks therefore can only be short and they must also be condidered critically.
b) Solution of Stecker-Enigma owind to faulty indicator technique.

Before 39 or 40 the following regulation for forming an indicator existed: With the day-key (Steakerverbindungen, Walzenlage, Ringstellungen) a "Grundstellung "os the three wheels was issued. In this "Grundstellung" a group of three letters which gave the actual initial position of the , wheels when encoding the massage was typed twice, one after the other. The result-six letters therefore-was incorporated at the head of the message as indicator. If therefore all indicators for one day were written under one another, then a Spaltenciser of six substitutions resulted in which in each case the first and fourorh enooded letter from the same clear letter (but different from the first and fouth) and also the third and sixth encoded letter from the sanie clear letter again also different from the others). Tn addition at that time only 4 to 6 steoker oonnections were used.

These indioatore mia there ono the "Grundstellung" of all messuges could now be solved as follows: All the $6 \times 17,000$ substitutions were tabulated without Stecker Connections. From these tables bigrams were formed according to the following rule: Each letter of the table appeared as the first letter of the bigrams: the second letter of the bigram was the letter of the table three letters distant in the same horizontal line, i. θ. resulting from the same clear letter. The bigrams were listed alphabetically together with their origin-clear letter, whee el position, "Grundstellung". On the average therefore each of the 676 bigrans appeared 6×676 times.

Only a small amount of work was necessary to find from these tables the "Grundstellungitwich had been used to form the indicators. This method was only possible because the small. number of Stecker connections upped meant that a considerable number of letters had not been affected at all.

Simultaneous with changing the indicator regulation, the number of Stecker connections was increased to 10.

No further alterations were made.
c) Ideas on the general. solution of Stecker-Enigma.

The solution of K machine with the aid or e-Ieiste has been stated. It would be reasonable to assume that these ideas would be used for steckerm Enigma to solve an individual message.

The effect of the stedker board can be indicated as follows; While the connection of the keys to the 26 terminals of the entrance wheel without Steoker connections is fixed, then wien Sticker connections are used a permutation of the connection of keys to the entrance terminals results. The e-key is therefore not fixed to the e-terninal; the e-key can we connected with any of the entrance terminals.

If therefore the principle of the e-Leiste is to be used to solve Steoker-Enigma, then 26 Leisten will have to be prepared; one Leiste for every letter from A to Z, each without Steoker connections.

The encoded text can, however, not becompared with these leiste to see wheterer elements correspond; for; by Stecker oonnections which were used in the encoding of the encoded text, the terminals from the whale to the ekys were altered.

In the case of Stecker-Enigma therefore the 26 most frequent bigrams must be recognised which appear instead of the same letters, under onother as in the case of the K -machine.

Since a total of 676 different bigrams appear, then the message in which, by comparison with the letter Leister, the 26 most frequent bigrams are to be found, must be fairly long. It is not possible to state accurately. how long, it mast certainly run into thousands. The difficulty is as stated to find the 26 most frequent bigrans.

It is possible that these bi, roans will be found more easily if several messages of the same phase are investigated instead of one long message. The length of this material which will consist of parts arranged in phases will have to be about 1,000 elements.

The investigations, as already stated, were never concluded, and it is impossible to state whether, from these considerations a solution of Stccker-Enggma would have resulted which would have been practical.

1- Solution of Messages of the same phase in the case of c. 36
All types of' Hagelin machines work according to the sane basic principle. There are 2.6 different substitutions available. These substitutions are known. They cire built up systematically so that when an encoded elament of the substitution is solved all other encoded elements of this substitution are also solved. This equals encoding of the-clear text with the aid of one time pad Mod. 26.

The resul.t of this fact is that two encoded texts of the same phase can ajvejys be solved. Buth ensoded texts are writien underneath one another in the same pinasc. Each of the 2 encoded elements listed underneath. one another is obtained by adding the sane munber to the two clear letters. There are therefore 26 different possibilities, If the 26 possible clear pairs for each pair of cnooded eletaents listed under one another are written under one another, then from each column the pairs which give a clear text in the top and bpttom lines must be found and airanged in rows.

The finding of the corret clear text pairs can be rade essentially quicker and easier if once and for all a cateloguc is made which contaias, listed acoording to the frequency of their.appearance in the language cor-- oerned, the 26 possible olear pairs for earin encoded pair.

If the encoded texts are colved in this way then withe $C 036$ the peg arrangement of the wheels and thus the day. key can be established from the row of ficures of the shifics from clear to encoded clements, In this the fact that all peg wheels move unjiformly $i_{s} e$. that there are short sub periods acoording to the length of the periods of the individual wheels is made use of to a decisive extent.

Messages of the same phase are recognised by the following:1. By indicators
2. By parallel positions (pazallelstellen) which appearl
3. By the maximun of similar elements resulting when the two messages are placed under one another in phase.

For 2 and 3 it is expedient to. employ the corresponding deciphering machines, (Entzifferungshilfisgerate).

2) Solution of C .36 from Stereotyped Beginnings

Let us assume the beginning "Confidential". rrom this clear text word and the corresponding encoded text the first twelve jumps of the typing wheel can be deduced. Thus the first twelve peg arrangements of the five wheels are known, if the initial position of the wheels is assumed to be "Zero position"(see Appendix, fig. 1)

In fig. 4(see appendix) the five wheels are indicated as having turned With the periods 17, 19, 21, '23, and 25. In the squares oontaining the sign " X " the peg arrangements if the wheels are known from the olear-anooded conpromise, (Klar-Geheim)Kompronims). The position 26 sign to 29 sign can then be imediately written in the clear text. The continuation is guessed. In this way further peg arrangements in the individual wheels can be deter mined. These peg arrangements by themselves show pieces of clear texts, eto. at other positions until all peg arrangements are known.

Even wrong solutions of the peg arrangement can be put right by comparing the same wheel position at other positions of the encoded text. The determination of the pegs can aldo be achieved with fairly short positions which have boen solved even though the work is more tedious.

3) General Solution of $Q_{4} 36$

For the general solution of $C .36$ an enooded text of considerable length or several short crochua tiexts nes required.

In order to determine the peg arrangement of the wheel with period 17 the encoded text is written in lines 17 long. Thus 17 columns result, and the problem is to divide the 17 columns into two classes in such a way that one class contains the colurns in which wheel 17 had a peg active and in other class oontains the cclumns in which wheel 17 had a peg inactive.

This division juto classes in a fuirlj long enooded text can ve done by comparing the frequency curves of the individual columns. In German clear texts the max. frequency of E and N cause the appearance of two "hills" in the frequency curves of the columns. Both these "hills" appear in each column. In one cdass however, the hills are shifted when compored with the hill.s of the other class at just os many places as the fixed pees of the rods of the rod cylinder.(Stangerkor'b) are opposite wheel 17 .

Sudoess is achivved in rairly short encoded texts by the elementary theory of errobs (Ausgleichsrechnung). The same is done with the four remaining wheels. In this way the peg arrangement's of the five wheels are determined. Experience shows that division into classes is done mome quickly and with greater certeinty the more fizod pegs on the rod oylinder are opposite the wheel in question. If the peg arraggement of a rheel has. been solved then it is best to elininaie this wheel from the encoded text eto. It', for exarmple, the peg amrangement of wheel 17 (one fired peg on the rod cylinder lies opposite it) cannot bs established, thon the enooded test eliminated from the other whecla is written down and under it a° seoond encoded text which results from the first by writing under eacn letter of the first text the next letter of the alphabet. From both lines the clear text can then be read casily.

General solution of BC. 38

In principle the general solution of $\mathrm{BC}, 38$ is the same as that of C.36. Division into classes, however, cannot be done by elementary mathenatical methods. The text must also be much longer; With the aid of Pearson's $x^{2}=$ method the solution of a German example text of 5000 ele-: ments was possible. It must, however, be stated here, that the working is very tedious andthat the solution of the German example was perhaps only possible beaause each part solution oould be confirmed as to whether it was right or wrong.
5) Solution of messages of the same phase with BC. 38 ,

This solution is done by the same procedure as that of C.36. It cannot be remembered whether the determination of the fixed pegs on the rod oylinder was possible; for this work was done at the deciphering center of the Ormy (Heer). In our opinion the determination of this, exen if it should be at all possible, appears to be very difficult and to demand a lot of time, since the shif't steps(Verschiebungsschritte) do not lead to one and only one solution of the required peg arrangement, since each rod can have two fixed pegs and also nothing is known a priori about the numbers of the fixed pegs which are opposite the individual wheels.

6) Solution of BC. 38 because of an error in whdeI setting

This solution was also carried out practicall; at the deciphering center of the Armir.

On oceasrions in encoding a message one of the six wheels' was set wrongly. Then the message was repeated with the correct wheel setting. Such cases could be re cognised by the almost identical indicators. If one encoded text is wri.tien unierieath the other, and if the distances of easin pair of latter, Fas esatijished, then the perion of eng. 19 was.shown.

$-8-$

From this eriod the peg irrangemont of whecl 19 onnld be very easily determined and the first, enooded text, in which the mistake hed been made, could bc reduced to the second. In most cases, however, both texts did not correspond conpletely. This was becausu the encoder in encoding a clear text twice noarly alvajs makes alterations in the text. One letter is loft out or there is some similar mission. In this way, citer the reduction of tho wrong text to the correct text, two biessaces of equal phase resulted, the solution, oi which is descrised abew. The solution of such messages of equal phase was indeed essentially easier, as that both had the sanc clear text only shifted in phase.

1) Cipher principle.

T $52 \mathrm{a} / \mathrm{b}$ encodes the sichs of the international, five-impulse alphabeto Each sign consists of five impulses apar't from the start and stop impulse. Each inpulse can be (+) or (-). There exe 32 different signs.

In the encodine procedure the individual ixpulses are at first changed and then transposca. Changite (l'ausohung) and transposition (Vervficfelung) are carried out with 10 peg (Nocien) theels. These ten peg.
 to the thoels. A schematio dilagrar of the k.ey principle is soen in Pig. 5 (see appendix). The positions $\mathrm{A}, 3, \mathrm{C}_{3}, \mathrm{D}, \mathrm{t}$ are ti:e change positions, positions Fs, $\mathrm{C}, \mathrm{Fi}, \mathrm{I}, \mathrm{K}$ are the transposition poisitionse Fiith the aid of 10 pairs of stenker wiras the 10 peg whecis wore conacied to thess positions, That was the basi.e or kay key (erlindscintissef).

The peg wheo.i whinh for example was omneoted to position a changed. therefore the finet impulse of the clean sigh, iterohen the pog whecl had

 impalse. When whe peg minel had we peg acti"s then wis changing or transposition took place. Eie.ch of the ic wheels ntsred one step for every letter typed. The movemunt was therefore matiorm.
2. Weaknesges of this ripher ripgipha,
 the 5 impulse arphabet in the Grman langage are not distributed equaliy. In some oasas the diffurastes aro very greato eogo the 5 impulse has only $2: \% \%(+$) inpulses.
b) Transposition is not very unirom. Assiuning that the peg whoels have 50% aotive pega ana 50,0 pegs non-activa-tinis is roughiy th case- then the ditstribution of the 5 impulses after transposition is represented by the following table.(Sce appondix,fig,6)
From 1 impulse therefore:

The 2 impulse'can never appear as 4 and 5 impulse.
c) The arrangement of the pegs (Nuckenbestifekung) is fixed and this must be assumed as known by the enerit.
d) The movement of the peg wheels proceods unfformily in spite of the very long total perios there are 10 short aub-peri.jds corresponding to the period of the wheels.
3) Solution of an encoded text.
a) Uiven an encoded text of 1000 letters. The enooded text must be available as' a perforated strip, i.e. with all signs transmitted. The followint must bo detemined :
i) The day key, i.e. the coinnection of positions $A-K$ with the wheels.
ii) The indicator (Spruchschilisesl), i.e. the initial position (fusgengsstellung) of the 10 wheel.s.

- At first the order and initial position of the changing whoels nust be deteruined. Let us assume that the vheel with perios 47 is any one of the changing wheels. The encoded text is writton in'the period of 47. The sum of (+) impulses', i.e. the number of holes for each sign is writton in every field. In this manner 47 columns result 21 in depth(vith 1000 enooded signs). In the 47 solumns the rumbers of ($*$) impuises in each field are added. Then a row of 47 numbers results, Since in each of the 5 impulses the number: of (+) impulse in German alear tazts is not 50\%, then the 47 coiumns can be dividea into two clanser, Ti the fiasti glass belong the oojumns whioh

rasult from non-antive pegs of the wheel. Ginoe it is known how many page wheal. 47 has it may havo 24 - then the 24 hiehest mabers arc dosignated
 If whecl 47 is a changine wheel thon'its place can bo found by comparing it with the ruw of figurgs fomed. It is of no importince if one or the othen figures in a colum has lud to a wrone result. In this woy therefore the 5 whecls which were uscd 03 changing whouls can be found and at the samo timo their initial position. It is, howcver, not yet known to which positions A, B, C, D, E the wheels are connected. Let us assumc that whecl 47 was conneated to position B. iccording to Fic. 6 , this vhecl is obvious in the third row of oncoded irppulses; for 50% of the 2 clear impulse go over into the 3 enooded impulsc and the 2 clear impulse has an unculal distribution of $(+)$ and (\sim impulses. If this manner the position of the 5 chaneine whocls which heve been foind can be determincd.

Tho disixjbution and the phase of the trarasposition whoels still remain to bo dotomined.

If pag wheed 53 is connocted to I, then tho third enooded impulse will bo viritton in phase 53. In half of the coluars thus resulting, then changing wheel. B_{2} which has already boen deternined, must be found againo If it is not found again, then whecl 53 cannot be connected to position I. With a linited number of attompts the position and phase of the transposition whools can thoroforc also be deteminod. In this way day koy and indicow tors are solved. Aly furthes solution on the some day is essentialily oasior as only the detemination with thew phoses of the wherls is now necessary. It sholid be mentioned here that for this method it is not necessary to assuru that tho pog arrangomont of tho whoels is knowh. The dotermination at the samo time of the peg arrangoment can also be achlioved from an enooded text of 2000003000 siens. Several encoded toxta which together have 2000-3000 elenents maj also be lised for the solutione In this case the individual messages misis "vorgattert" in the submperiods of the whool periods, ioe. messages with the same indicators listed togother.
b) Another solution is also possible, An enooded text of fess than 1000 elements is required, In order to determine ohanging wheel B and transposition wheal I only the third, onooded impleys is investigated. Because of the cirouit and the fact that the (r) and (-) signs of the clear irpulses are unequal in number, wheel B must bacomo obvious. The third oncoded impulse is thorefore allowed to run through all 10 wheols in turn in each phose. One position then will show the greatest number of coinciding signs. In this way the period and phase of wheel B arc determined. After B is known the period and phase of transposition wheel frecorresm pondingly deterrined. Sirilar considerations lead to the determination of the other whools. This soilution, whitoh has only been touched upon, cannot be carried out successfully within a reasonable tine without the neoessary deciphering apparatus (En'zjefferungshilffsgerklte). With appan ratus especially constructed for this purpose the solution is possible.
o) T $52 \mathrm{a} / \mathrm{b}$ was equipped with a handla which served the purpose of turning baok all the 10 wheels to their initial position (indicator). According to the regulations laid down thjs handle was to be used when the two machines (receiver and transrititter) no Zonger synchronised. In cases where there were bad conditions of transmission, this was to be expected many times during the transmission of one mossage.

[^0]\[

$$
\begin{array}{r}
\because:\} \\
\because \\
\vdots \\
\vdots
\end{array}
$$
\]

If one further oonsiders that in military toxts stareutyped beginnings appear particulorly frequently, thon this solution will have been possible In most cases evon without having to ermbloy thi general solution methods as under a) and/or b).
4) Change of the transposition pyramt λ_{0}

Figg 5 shows the basic transposition pyranid, other pytarids were, howover, possiblo. In figgo 5 the jinal pointis oif tho transposition switahes (Filufelschalter) aru numberci 1,$2 ; 3,4 ; 5,6 ; 7,8$; and 9,100 1Pigo 7 shows another tanansosition fyranias

5 impulsor can bu transposid in $51=120$ cifferent wayso Theorotion
 pyrwide, lwaover, woro forbiddein, tho sonnaotions 1,10 or 2,3 or 4,5 or σ_{3} ? or a_{g} ? wiro net pomisciblo, as thuse oomerstions are nut uffootivo.
 any othuin prowito mino rostid't tharefox as shorm in sige 6 remains in puln jopa and tineffor tho rossibilitjou of solntjon as statod also ronding It cun bueone mory difffioult because in ary case a ourtoin numer of attempts musti be made。

SOLUTION OF TFIEPRTNXER CTPHER MWOHINE T 52 C

1). Guneral Romarks

Sinco SFET I $52 \mathrm{a} / \mathrm{b}$ vas onnstidend broakalols than inh fullaring altomations woze proposed by Chi:

b) Cnangeuble poga on the prg mheuls.
0) Enithiforsi turnings of pug whonlso

Nono of timesu Cumands was acoapted. Then $n 52$ Q criginated. Its only
 appotive

Fike ex ropresents the ripher pranotple of t $5 \% \mathrm{y}$ scheriantically (see appendix).
This prinaiple is different from that of it 52 a 10 in tho points:
a) Where In n 52 a/b 510 peg wheel is aotive, IT 52 g has four activo;
b) Whitc with 1452 a/1 there ane difomot transpocition pyranids; the transposition pyranid oi I 52 O t.n fixud.
 In the first nodel of T 52 G eaoh pue wheed was used four times, viz twioe for changing and twico for aransposinge. In Figo 8 therefore each of the 10 positions A to K is oharegod twioe and transposed twioe. Ithe lottiors written in the diageam wort chosen a't randon so that thoy can oniv Be taken as a reprosontation of the principle。
3) Eoysibility bf broaking into this diruito

Sinco oach cf the pug whocls takes pumt in the chenging twioc (compore Fige 8) the olear sign s.s changed wy the ohanging process in a oharaoter itstic manner, Lat us essuric that the cloar sign had $3+$ and 2 . itpulses. By the changing procoss afthor two of the three α impulses aro changed
 aro oharued rosuiting in five + and $0-$ impulssa or finally one + and ono :; irmulses are changed resultinge in throe + and two - impulisos. In othor words: the nuriber of the + irpulses always romoins odd and the number of the in inpulses always remains uven whon the offect of a whoel on the ohanging process is taken into considoration. In general'terms: by the changing process the even and odd oharacter of the + and/or - inr pulses of the clear sign is not changod.

By transposition tho character of the impulsos is not changed, tharefore the encoded sign has just as many + and/or- irpulses modulo 2 as the olear signo:

If in a text a clear word is presuned then it is: known for exarmle how riany + inpulises each lotter of this word has in the five impulso alphabet. If the letter'sequence is written down as a mow of fizuros rood 2 then a sequence of figures 0 and 1 results e. E. 001011101100 from a word of . twelivo letters. In the encoded toxt all signs are now written down accord ing to the number of + irpuls6s. Thus a sequeno of figuros of 0 and 1 also 'results here. The sequenoe of figures of tho presumed clear toxt word is then moved along the'sequence of figures of the encoded text. If at any one position of the encoded text the samo figures appoor it oon be conoluded with groat probability that the/ proslumed vilear tuxi word ia at this position of the enookd texte The longor the wror the loss proba-

POR - - 13-

results from another clear text wrord. Thus a part onrorcenise of oleor and encodod text has originated. Tho unifoni tarming of the peg whools, the fixad peg errangenent and the method of wicxilns of tho machine just desoribad must be considozed as zuch giceat wainuesso that the discuvory of a method of solution would havo to ba rookoniaj with soonar or lator.

A change of circuit was therefore mado. Each wheel was no longor used twice for changing and twico for tiansposingo somo whools could oven be ussd theroo timss fur chanzing and onco for transposing and vice versa. Inas. In Fifs 1 somo ?ottors boild sypuar at tho ohanging position 3 tinos and/ue onsu; sinilarily at tho traneposinis position

This the possthijsty af guanting pheoos ar cloar toxt wes done away witho Tho Srousitio investigations wore conthnace livanthile the differont dociphosime manhinos (mnzinfortugshilf'sgurlato) had shom their worth in selving najpogruphic problens. Exporionees hac been gained pariticularly ablout tino good work of thoso deciphering utas ovon at ni.gh speeds. With thisu proxicuinitios it was possible to give a motrou with which I 52 C could be solvod by erploying dociphoring zwahinss:' '
4) Gonoral Sclution of T 520

The basio tdaa of tho solution is as follows:
The trangposition pyreatid divtides ;ach indicilunal implize non tuiforvily on the fito channcis. Filg, 6 reprosonts the division of each impulsc on thu five channolis. 50% ot the second jrgrise aiter transposition proceeds alung the third channei, 50% of the thard inpuiss a.long the fourth ahannel. and 50% of tho folu'th istpulso alune tho ijsist vilanici. If on the typewriter wit $52 \mathrm{a} / \mathrm{b}$ or C the "دetior Kst" is olway" prossed. (in the fivo impulse alphabot this sonsists of $5+8 i(\mathbb{C}: z)$ thon the whanging whols in thu seocna abiannol become 5% ojviutes tia tho oncodod toxt oi tho thimed ohanneil.
of tho remoining 50% hali comespond with the changing. whauls owing to
 Whoejs booono 75% obvious in the encoded text, of the tinird channelo since from tho olear text no equal distribution of + and - impulses goes into the mrehines the chanying whoels of the socond channe? buoome moro than 50% obvious in tho third wequonoo of onooded irpulses. sinitarly for the ohanging wherls in the third ond fourth chaniels which become obvious from the sequoner of enooded irmulisus of the fourth and fiftil ahannols. These facts load to a solution:
From ton differont peg wheela $\left.\frac{10}{1} \frac{x}{x} \frac{9}{2} \times \frac{8}{3} \frac{x}{x}\right]_{4}=210$ djfforent corabinations, oach consisting of four whools, can bo formed one of these 210 different comidinations hust thorefore be offoctive as the changing wheols aombines ation oogo in a second channel duxing the eavoding of the toxt to be solvod, The problem is to find this oombination and at the same time to determine the correat phaso pozition of the vheels. For this purpose a soquence of imptilses fror each of the 210 difteront combinations is formed. This sequenoe must be as long as the period of the four vheols usod on this occasion. The third sequonce of lirpulsss of the enooded text, which is to bo solved, will be now conparod with oach of the 210 difforent soquences of impulsos to seo which inpulsos corrospond. a maximum of oases of correspondenco will be offered by the right combination in the right phase position. These investigations can only be nade with quick working deciphering machinos.

If oogo a oombination of the changing wheels is found in the second impulso then tho deterrination of the ohanging shoel soabinations in the third and fourth irpulso is essentially oasier,

In this mamer the peg wheels which and effootive as chancing whonls in the seoord, third and fourth channels are determined. For the most port these ore at leest nino wheols. Tho last nisging wheel oan then be found easily by trial and error.
5) Further dovelopment of SFM T 52

After these conclusions had been arrived at it was deaided to introduce ununiform turning of the wheols, in order to preveht the possibility of solution by the appoaranco of subperiods, Thus by reconstructing T $52 \mathrm{e} / \mathrm{b}$ the typos T 52 D oxicrinated and from T 520 the type T 52 E originated.
 In the cantry of both these typos lip to now no possibility of solution has been scun.

For the sake of completeness it must be stated here that in the case of a.1. types of 's 52 the solution of mpssaces of equal phase is of course possible. For this purpose in practice about ten messages of oqual phose will bo nocessary.

SOLUTION OF STFTT 43 BY REASON OF TEOHNCAI DEFRCHS OF THR MACHINE.

1) Enooding wi.th GrifP 43 ic uftoobed by tho stipexpasition si a Kay perforated sirip on the clear poryomiud strip, which results in a pure addition of oloos and key irpulsos in accocrlance wi.th the following prinoiple:

Equal curcont, conditions in thu clear and key sign give a + irpulse in the encoded sign and unogual conditions cive a .. impulse.
(The revorse, may haro boen the oase)

This oowresponds to tho schemo: (Soe Fice 9 in appendix.
2) Each koy periorated strip is only uned once, so that the solution of an encoder toxt is thus thooretivally imposiblis. The key porioratad atrip is autoratioally destruyod of'ter it has pasized through tino machine. .
3) Defuct,s of the mathinc, which sohomationol.iy have exaotly the soris result as a phasom shift in the superyosition oi oloar and koy riens, are key relaye, which work too slowly. Eog the phaso shift from kuy sien to oloox sitin is 30% (2 H is is naturally less in prectice.)

An osoillogran of enuoded texts showed thurofom shortonod and lengthenod irpilises. In ortlor to ronove this dofoct it was dumandod that evory
 tasd the enoodud impulses. It cannot bs statad with csatainty whether everywhore, whore SFipl 43 vas used, the teloprintor "Entzorror" was aotually ormloyed, Silemens made uvery efftort to removo the souroes of tochnical defects by changing the construction of s.rpil43. New perfect machines however never sane into action.
4.) Ono and oiliy one solution of an enooded toxt vith nonegynchronised irpulses by roaking use of an osoillogram is possible. In examplo fige 10 (soe appendix) the first gap in, the current (a) in tho enooded sign must cosultj from $a+i$ ipulso in the key signo sinco the first enooded inpulso and the first koy irpulse are both + then tho first olear impulse must be to In addition the second key impulse must bo + for otherwise the first encoded sign would have been shoritened, Slnco the seoond enooded, impulse is " then the second clean irmulse ratist bo "o Since further the second enooded impu?se is shortenad the thind loy irmulse must be -. In this way further conclusions can be arrived at and one and only one solution pro cloor and key siems bo found.

In 1937 the development of an automatic Schitissel-Zusatz was begun by Heeres Waffenomt (WA Ertie 7) o Firm Lorenz AG was commissioned to undertake the teohnical work, The prinoiple of a Zusatz was chosen as $\%$ that it could bo connectod to uny rilear teleprinter. The Zusatz was to funotion mechanically as opposed to the tieleprinter vipher maohlno T. 52 whiluh worked eloctrically.

Throughout the yoaw different types of zusatz wore developed,
 S2. 42b, 32 420; the last one was not nompleted, at the end of the war.

Investigations of the security of the ajfferent zusatze were
 It Dr STEIN (OKY/Chi): These are the only two who are able to cive detailed information about the sectrity or solution of the zuslizze. The statoments nade here oan therciore lay no olaim to completeness and in part no slaim to absolute reliabjality.
2. gy 40 (ola typo).

With $5 Z 40$ (old type) the inulunses of the five implese alphabet wore chansca. Two of the ten peg wheels influenced one impulse. The pog wheels had fixed pegs. Euch whocl nowed one step for every lotter, The periods of the whols had no common sactior. The periods vere about 90 longo

Tho security of this type was not great:
a) two mossages of equal phase coula be solved according to the same prinoiple as two messages ố, eoga $\mathrm{C}_{4} 36$ (Hageinn)。
b) the indicator could bo obtained from a part oompromise. Since the period and pee orrangoment had to be assumed as known by the enemy, then the so-called "pure kcy" of the machine could be deduced. Under "pure key" the enooded text is understood which comes put of the machine when as clear text the "letter key" is alvays pressed. Since the 5 impulse sign of the "latter key" consists of nothing but + impulses then the "pure key" offers to some extent a representation of the effect of the peg orrangeinent. If with SZ 40 (old type) the "pure keys" for each of the five inpulses ore formed (sach of these five keys has a longth of roughly $90 \times 90=8100$ signs) then in each of these five keys the position must be found again, which is identical with the "pure key" of the part compromiso. In doing this the "pure key" of the part compromise is obtained by subtracting the clear text from the encoded text. In this manner the phase position of . thel peg wheels is found at the moment of the encoding of the compromise toxt. Thus the indicator is found and the entire encoded text can be docoded.
c) An individual oncoded text of $1000-12000$ elements could be solved. The first sequence of irpulses of the enooded text results by the superposition of the "pure key". of the first impulse over the clear text. The "pure key" of an impulse on the other hand results from the superposition of two pog wheels. If, therefore, the first row of encoded impulsos is written in rows equal. in length to the period of a peg wheel, then the individual columens contain imprlases which were treated equally by this peg wheel, i.e. all with actove peg or all with inactive peg. Since the clear text shows no equal distribution of + and - jempulses then the peg orrangement of the other pog whel vilich was active during the enording becomes obviotis.

For these reasons S2 40 (old type) was only construated in small numbers (roughly 40 models) and was only employed for short per iods on land lines whi wh oould be checkeda SZ 40 was then developed from this first model.
3. SZ 40.

SZ 40 has twolve peg wheels of different periods with variable pegs. Fig. 11^{\prime} 'eives a schemati, represcntation of the method of workine of the wachine. (See Appendix). The twelve peg wheels are given the lutters is - M. The periods are given in brecicets. Eagh of the Spaltenofisar whoels (H M M) moves ona stop for every latter. The Springcisar wheels ej.thos move one step together or they do not move. The movemunt of the Syringuatsar whoels is conixolled by the Vorgelege this control j.s effoutive according to the following rule: For every letter whoel. G moves nns step. Theol F then moves a stop whonover an active peg of Wheel G comes into play. The Springcierer wheel. 3 then move onc step tom gether when on active peg of whoel F comas into play.

The peg wheels i and F encode the Pirst clear impulse, B and I thu seoond, C and K the third, D and L the fourth, and G and M the fifth. Dissincilarity of pog conditigns in one of the pairs of wheels loads to a change of the cloar'impulses, iue. + becomus on and vicu vursae Similarity of pag conditions in a pair of wheels makes the olear irmulse romain unchanged.

At first, ofter intreduotion of 5.340 , the Spalten- and Springcisisar wheels were tiven a now peg orrangomont monthyy and tho Vorgeloge wheels daily. The twelve peg wheels vore turned to a differm ent basio position for each mossogic kecentiv all twelvo peg wheula rum coj.ved a now peg arrangement doily.

Security of SZ 40.
a) Two messages of equal phass oan bo solved according to the samo nethod of two messages of equal pinase with SZ 40 (old type). After solution of messages of equal phase the whole maonine can be solved as follows:

If the corresponding clear text is subtracted from one of the solved enooded-texte, then the "pure key" results. The first row of impulses of inpulses of this "pure key" is vritten in lines 41 long, one undor the other. The number of changes which appear betweon neighbouring impulses of the first and scond colum is now datermined. Such a chance is evident when in the first column a + appears and in the second column next to it a - or vice vorsa: Sinilarly the number of changes between the second and third column, the third and fourth column etc to finally between the forty-first and first colum ore arrived at. If the number of changes in one colum is greater than half the depth of the column, then at this position a pee change has taken placu in the Spaltenoliser wheel H (41). If the nuniber is less than half the dopth of the colum, then no pef change has taken place. This results in the following menner:
The Springoỉsar whecls on many occasions do not move during the encoding of some signs; then no change of irmulse can be caused by the Springcilsar. If a chanise of impulso is present then it must have been caused by the Spaltenckisar. In this manner, therefore, the peg orrangenent of dheel H can be determined. it one position an assumption must be made as to whem ther a peg is active or inactive in whoel H. If this assumption is wrong, then the reverse of the peg arrangement results. This is, hovever, unimportant, as, later the revcrse of the peg arrangement can. lee found from the corresponding Sprincclisori wheel to

Similorly the peg arrangenents of other Spaltencilsar wheels $I_{g} K, I, M$ are found。

Simultansously with the peg arrangement a relative phase of the Spaltenctisar wheels is detcrmined. If the "pure key" is eliminatad from the Spaltencäsor by subtraction, then the pure Springe: remains. The task remains to determine from the pure Springolisar key the peg arrangement of the Springolisar wheels ana the Vorgelege wheels.

For this purpose the complete five impulse signs of the pure Springoatsar key are required. Since all five Springcasar wheels often* do not move, then the pure Springolisar key is choracterised by the fact that frequently similar five impulse signs follow immediately after one another, In order to detemine the positions at which the 'Springeasar wheels have moved one step, vertioal lines"are dravn between the signs at each position at which at least one impulse has changed from one sign to the otines. It may be that lines will. have to be drown also between two signs which look the same. Then at these positions the peg whoels of the Springcitsar have moved one step but the peg character of each Spwincogsar wheel has in doing this not altered. Since the periods of the wheels are known then by a few attempts the correct jumps can be determined, The peg arrangements of the Springcisar whoej.s and their rel.ative initial positions are thus known. Ihe arrangement of the Vorgeloge wheels still remains to be determined。. By the marking off in tho "pure Springcäsar key" the positions axs known at whioh stop orders werc given by the Vorgelege. From the sequence of these stop orders, the knowledge of the periods of the Vorgelege wheels and the move meohanism of these wheols, the peg arrangements can easily 'be determined.

Thus the entire machine setting is solved, and the' longer of the two encoded texts can be encoded to the end.
b) The doscription of the solution of the peg arrangements from
two messages of equal phase shows at the sape tima how the machine setting
can be solved from a clear - encoded - compromise.
c)

It is known that the abovementioned G-Zusktize experts recognised a weakness of the machine in the comparatively short period of the Vorgele (this period equals $37 \times 61=2257$ steps). In the case of a long encoded text of about 20,000 encoded letters the period of the Vorgeloge and thus the drive of the Springcaisar whoels appears ten times. This fact led to their making statements concerning the stop orders of the Vorgelege. Details of these are not known.
d)

At the beginning of the employment of G-Zusatzo it was nomal to press the "letter key" at the beginning of each message. When the indicator of many messages (about 120) was known and also the first clear sign of each, the peg arrangement oould be solved. Detail.s oan no longer be given.

In order to prevent all these possibilitios of solution, series of regulations were issued. It was forbidden to press the "letter key" as the first sign. Nonsense words were to be placed at the beginning and the ond of each message, i. e. words chosen at randon by the encoder and which had nothing at all to do with the contents of the message. The length of messages was limited to 10,000 (?) letters. In addition regulations for peg arrangements were worked out and employed which were to prevent the solution described under para a) and any similar solutions. (The regulations for peg arrangements will be gone into in more detail under the description of SZ 42).

At'ter these regulations which, however, made procedure much more difficult, $S Z 40$ was considered as secure.

In－the noentime a tochnical alteration had also been envisaged
 In this way $S Z 42 A$ and $S Z 42 B$ originated．

4．SZ 42A and B．
The difference between $S Z 42 A$ and B and $S Z 40$ was only in a change of the method of drive of the Springolisar wheels．In the case of $S Z, 42 A$ the fifth impulse of the cleor text and the peg arrangement of wheel I，influenced the drive of the Springcisar wheels as also did both Vorgeloge wheels，In the case of SZ． 4.2 B wheel A of the Springcisar also oomo into play．It may be mentioned here that the change from $S Z 42 A$ to $S Z 428$ was not made for reasons of deciphering security but comes f＇rom technicel propusals made by Dr LTEBKNECHP of $\operatorname{il} A$ Prilf 7o

The clear text function was introduced in order to prevent the appoaronce of me＇ssages of equal phase．The result of further security investigations made by the abovementioned experts was the recognition of further weaknosses，details of which are no longer known by w．It can be sajd with cortainty that those weaknesses could be done away with by a suitable choico of peg arrangements．Therefore，peg arrangement regulations for SZ 40 and SZ 42 were worked out by the above－mentioned experts．The peg orrangement regulations consist of lists of tables whioh are given to the producer of the keya

The lists of tables can be descrjbed．as follows：
1）Peg sequences $1,2,3$ or 4 long were allowed generally for each wheol，i．e_{a} at the nost four similar peg conditions wore allowed to follow one another．

2）The limit of the number of active pegs was given for each wheelo
3）The limit of the number of peg sequences was given for each wheel．
It was lef＇t to the produser of the key to decide into which se－ quenve he arranged the peg sequences．This sequence was chosen by him out of the hat．

Fig． 12 （See Appendix）shows tho layout of one tablo，as far as it is remombered，by RN．It serves to provide the arrangement of wheol H （41）．In the lef＇t colum are the numbers of active pegs，which are al－ lowed．Along the top are the peg sequences allowed．In the talle itself each line gives，under the peig sequences allowed，two lots of four numbers． The producer of the key ohooses one of the peg numbers，for example 17. He then chooses to the right of 17 in the table one of the rows of figures， e．g．4311 1332．The peg arrangement of wheel H（43）shows therefore four isolated + ，three peg sequonces ++ ，one peg sequence +++ ，one peg sequence＋＋＋＋，one isolated peg \rightarrow ，three peg sequences $-m$ ，three peg sequences …，and two peg sequences $\rightarrow-\ldots$ ．The sequence is chosen out of the hat．The result ist，$e_{0} g_{0}++\cdots+\cdots+\cdots+++\cdots-\cdots++\cdots+\cdots+\cdots \cdots++\cdots-m$ $++++\cdots \cdots+\cdots$ ．Sinilarly from the tables the peg arrangements of all Spalten－and Vorgelege wheels were taken．After determining the arjange－ ments of the Vorgelege wheels the choice in the table for the arrangement of Springo⿺廴⿻肀二灬日的 wheels was limited．

5．$\quad \mathrm{SZ} 42 \mathrm{C}$
The＇plans for $S Z 420$ represent another step in the development of G－Zusatze．Here also the Spaltencåsar wheels were to movo ununiformly and indeed each one individually．The control of the Springctisar wheels was to be taken over by the Spaltenoäsur wheels so that both Vorgelege wheels dropped out．This developnent，however，was never conoluded．

Appondix (Solution of Ene.ppo..a machicies),
疷1. - Emimak

n

Appendix (Solution of Hagelin machines).
Fig. 4

CONFIDENTIAL

Figure 5
Appaidix (Tsza/b)

Fig. 8.

Appendix (SFMT43)

Fig. 9

Fig. 10

Fig till2
Appendir (Solliniclizisäte)

Fis11

Figh. Wheel 4 (47)

[^0]: 'Since however the numer of substitutions in the riaohine is linited and since these substitutions are known, then the solution of messages of the same phase, which result from making lise of the handle, is quite elementary. Probably 5 messages and/or parts (Teile) are suffiaiont.

